Abstract

A finite-difference formulation is applied to track solid–liquid boundaries on a fixed underlying grid. The interface is not of finite thickness but is treated as a discontinuity and is explicitly tracked. The imposition of boundary conditions exactly on a sharp interface that passes through the Cartesian grid is performed using simple stencil readjustments in the vicinity of the interface. Attention is paid to formulating difference schemes that are globally second-order accurate in x and t. Error analysis and grid refinement studies are performed for test problems involving the diffusion and convection–diffusion equations, and for stable solidification problems. Issues concerned with stability and change of phase of grid points in the evolution of solid–liquid phase fronts are also addressed. It is demonstrated that the field calculation is second-order accurate while the position of the phase front is calculated to first-order accuracy. Furthermore, the accuracy estimates hold for the cases where there is a property jump across the interface. Unstable solidification phenomena are simulated and an attempt is made to compare results with previously published work. The results indicate the need to begin an effort to benchmark computations of instability phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.