Abstract

An exact second-order formulation is presented for computing the slowly varying second-order hydrodynamic forces on floating structures in irregular waves. The near-field approach based on direct integration of the fluid pressure on the submerged body surface is employed in conjunction with numerical first-order solutions by means of the hybrid finite element technique. Green’s second identity is exploited to evaluate the second-order forces due to the second-order velocity potential. Numerical results are presented for the slow drift excitation forces on an articulated column and a semi-submersible platform. It is shown that the contribution from the second-order velocity potential is more significant to the roll moment than to the sway and heave forces on the semi-submersible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.