Abstract

We establish a strategy for finding sharp upper and lower numerical bounds of the Poincaré constant on a class of planar domains with piecewise self-similar boundary. The approach consists of four main components: W1) tight inner-outer shape interpolation, W2) conformal mapping of the approximate polygonal regions, W3) grad-div system formulation of the spectral problem and W4) computation of the eigenvalue bounds. After describing the method, justifying its validity and determining general convergence estimates, we show concrete evidence of its effectiveness by computing lower and upper bound estimates for the constant on the Koch snowflake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.