Abstract

The two-dimensional Reynolds averaged compressible Navier-Stokes equations are solved using MacCormack's second-order accurate explicit finite difference method to simulate the separated transonic tur- bulent flowfield over an airfoil. Four different algebraic eddy viscoisity models are tested for viability to achieve turbulence closure for the class of flows considered. These models range from an unmodified boundary-layer mixing-length model to a relaxation model incorporating special considerations for the separation bubble region. Results of this study indicate the necessity for special attention to the separated flow region and suggest limits of applicability of algebraic turbulence models to these separated flowfield. each of these studies the time-dependent Reynolds averaged Navier-Stokes equations for two-dimensional compressive flow are used and tur- bulence closure is achieved by means of model equations for the Reynolds stresses. Wilcox1'2 used a first-order accurate numerical scheme and the two equation differential tur- bulence model of Saffman 12 to simulate the supersonic shock boundary-layer interaction experiment of Reda and Mur- phy 13 and the compression corner flow of Law.14 Good quan- titative agreement with the Reda and Murphy data was ob- tained, but only the qualitative features of the compression corner flow were well simulated. Using a more sophisticated second-order accurate numerical scheme, Baldwin3'4 con- sidered both the two equation differential model of Saffman and a simpler algebraic mixing-length model to simulate the hypersonic shock boundary-layer interaction experiment of Holden.15 He found the more elaborate model of Saffman to yield somewhat better results than the algebraic model, but at the cost of considerably more computing time. Good quan- titative agreement with experiment was not obtained with either model. Following Baldwin's approach all subsequent investigations have been performed using the more rigorous second-order accurate numerical scheme of Mac- Cormack.17'18 Deiwert5'6'11 considered an algebraic mixing- length model to simulate the transonic airfoil experiment of McDevitt et al. 16 while Horstman et al. 8 used a similar ap- proach to simulate their hypersonic shock boundary-layer ex- periment on an axisymmetric cylinder. In each of these studies, while qualitative features of the flows were described well, good quantitative agreement with experiment in the in- teraction regions was not obtained. Using a relaxing turbulence model Shang and Hankey7 simulated the compression corner flow of Law, and Baldwin and Rose10 simulated the flat plate flow of Reda and Murphy. In each of these studies the relaxing model was found to per- form significantly better than the simpler algebraic model and, according to Shang and Hankey, provided significantly better comparisons with measurements than were obtained by Wilcox using the two equation differential model of Saffman. In each of these studies it was essential that the full Navier- Stokes equations be considered to describe the viscous- inviscid interaction and the elliptic nature of separating-

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call