Abstract
We describe a numerical algorithm to compute surfaces that are approximately self-similar under mean curvature flow. The method restricts computation to a two-dimensional subspace of the space of embedded manifolds that is likely to contain a self-similar solution. Using the algorithm, we recover the self-similar torus of Angenent and find several surfaces that appear to approximate previously unknown self-similar surfaces. Two of them may prove to be counterexamples to the conjecture of uniqueness of the weak solution for mean curvature flow for surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.