Abstract

The resistance distance between two vertices of a simple connected graph G is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to G, with each edge being replaced by a unit resistor. The Kirchhoff index of G is the sum of resistance distances between all pairs of vertices in G. In this paper, the resistance distance between any two arbitrary vertices of a chain silicate network and a cyclic silicate network was procured by utilizing techniques from the theory of electrical networks, i.e., the series and parallel principles, the principle of elimination, the star-triangle transformation and the delta-wye transformation. Two closed formulae for the Kirchhoff index of the chain silicate network and the cyclic silicate network were obtained respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call