Abstract

The present work is primarily focused on the estimation of relative dose distribution and effective transmission around a shielded vaginal cylinder with an 192Ir source using the Monte Carlo technique. The MCNP4B code was used to evaluate the dose distribution around a tungsten shielded vaginal cylinder as a function of thickness and angular shielding. The dose distribution and effective transmission of 192Ir by 0.8 cm thickness tungsten were also compared with that for gold and lead. Dose distributions were evaluated for different distances starting from 1.35 cm to 10.15 cm from the center of the cylinder. Dose distributions were also evaluated sequentially from 0 degrees to 180 degrees for every 5 degrees interval. Studies show that all the shielding material at 0.8 cm thickness contribute tolerable doses to normal tissues and also protect the critical organs such as the rectum and bladder. However, the computed dose values are in good agreement with the reported experimental values. It was also inferred that the higher the shielding angles, the more the protection of the surrounding tissues. Among the three shielding materials, gold has been observed to have the highest attenuation and hence contribute lowest transmission in the shielded region. Depending upon the shielding angle and thickness, it is possible to predict the dose distribution using the MCNP4B code. In order to deliver the higher dose to the unshielded region, lead may be considered as the shielding material and further it is highly economic over other materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.