Abstract
The present work deals with the investigation of the gas-solid flow in a horizontal pipe using the Eulerian-Eulerian modeling approach for a particle size range of at solid volume fractions of 0.001 and 0.10 which is missing in the existing literature. An extensive study has been performed to investigate the effect of the particle-wall collision and particle-particle collision, solid volume fraction, particle size and inlet slip ratio on two-phase pressure drop and Nusselt number. The effect of the collisions is found to be prominent only at higher solid volume fraction (10%). Under the particle size considered in the present study, interestingly, the pressure drop shows completely opposite trend under two different solid volume fraction situations which has not been reported in earlier studies due to the consideration of relatively large-sized particles. On the other hand, the Nusselt number gets reduced with an increase in the particle size. The effect of the inter-particle collision is found to affect the pressure drop significantly under the current operating conditions. Both the pressure drop and Nusselt number increases with an increase in the solid volume fraction. Similarly, an increase in the inlet slip ratio increases the Nusselt number, whereas it reduces the pressure drop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.