Abstract
Optimum soft decoding of sources compressed with variable length codes and quasi-arithmetic codes, transmitted over noisy channels, can be performed on a bit/symbol trellis. However, the number of states of the trellis is a quadratic function of the sequence length leading to a decoding complexity which is not tractable for practical applications. The decoding complexity can be significantly reduced by using an aggregated state model, while still achieving close to optimum performance in terms of bit error rate and frame error rate. However, symbol a posteriori probabilities can not be directly derived on these models and the symbol error rate (SER) may not be minimized. This paper describes a two-step decoding algorithm that achieves close to optimal decoding performance in terms of SER on aggregated state models. A performance and complexity analysis of the proposed algorithm is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.