Abstract
This paper deals with the computation of polytopic invariant sets for polynomial dynamical systems. An invariant set of a dynamical system is a subset of the state space such that if the state of the system belongs to the set at a given instant, it will remain in the set forever in the future. Polytopic invariants for polynomial systems can be verified by solving a set of optimization problems involving multivariate polynomials on bounded polytopes. Using the blossoming principle together with properties of multi-affine functions on rectangles and Lagrangian duality, we show that certified lower bounds of the optimal values of such optimization problems can be computed effectively using linear programs. This allows us to propose a method based on linear programming for verifying polytopic invariant sets of polynomial dynamical systems. Additionally, using sensitivity analysis of linear programs, one can iteratively compute a polytopic invariant set. Finally, we show using a set of examples borrowed from biological applications, that our approach is effective in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Automatica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.