Abstract
Accurate phase noise simulation of circuits for radio frequency applications is of great importance during the design and development of wireless communication systems. In this paper, we present an approach based on the Floquet theory for the analysis and numerical computation of phase noise that solves some drawbacks implicitly present in previously proposed algorithms. In particular, we present an approach that computes the perturbation projection vector directly from the Jacobian matrix of the shooting method adopted to compute the steady-state solution. Further, we address some problems that arise when dealing with circuits whose modeling equations do not satisfy the Lipschitz condition at least from the numerical point of view. Frequency-domain aspects of phase noise analysis are also considered and, finally, simulation results for some benchmark circuits are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.