Abstract
<p style='text-indent:20px;'>The reciprocity theorem in elastic materials states that the response of a linear, time-invariant system to an external load remains invariant with respect to interchanging the locations of the input and output. In the presence of nonlinear forces within a material, circumventing the reciprocity invariance requires breaking the mirror symmetry of the medium, thus allowing different wave propagation characteristics in opposite directions along the same transmission path. This work highlights the application of numerical continuation methods for exploring the steady-state nonreciprocal dynamics of nonlinear periodic materials in response to external harmonic drive. Using the archetypal example of coupled oscillators, we apply continuation methods to analyze the influence of nonlinearity and symmetry on the reciprocity invariance. We present symmetry-breaking bifurcations for systems with and without mirror symmetry, and discuss their influence on the nonreciprocal dynamics. Direct computation of the reciprocity bias allows the identification of response regimes in which nonreciprocity manifests itself as a phase shift in the output displacements. Various operating regimes, bifurcations and manifestations of nonreciprocity are identified and discussed throughout the work.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.