Abstract

Supersonic flows over a sharp and a flat-faced blunt fin mounted on a flat plate are simulated numerically. Several basic issues involved in the resultant three-dimensional steady flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of a grid resolution on the origin of the line of separation. Various shock strengths are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of secondary separation. The length of separation ahead of the flat-faced blunt fin, bifurcation of a horseshoe vortex, and the accessibility of a closed-type separation are investigated. The usual interpretation of the flow field from previous studies and new interpretations arising from the present simulation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.