Abstract

In this paper, an artificial neural network (ANN) model is developed for estimating monthly mean daily global solar radiation of 8 typical cities in China. The feed-forward back-propagation algorithm is applied in this analysis. The results of the ANN model and other empirical regression models have been compared with measured data on the basis of mean percentage error (MPE), mean bias error (MBE) and root mean square error (RMSE). It is found that the solar radiation estimations by ANN are in good agreement with the measured values and are superior to those of other available empirical models. In addition, ANN model is tested to predict the same components for Kashi, Geermu, Shenyang, Chengdu and Zhengzhou stations over the same period. Data for Kashi, Geermu, Shenyang, Chengdu and Zhengzhou are not used in the training of the networks. Results obtained indicate that the ANN model can successfully be used for the estimation of monthly mean daily global solar radiation for Kashi, Geermu, Shenyang, Chengdu and Zhengzhou. These results testify the generalization capability of the ANN model and its ability to produce accurate estimates in China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.