Abstract

A non-iterative numerical scheme is presented which computes in a single iteration the steady, laminar flow of a viscous, incompressible, electrically conducting fluid caused by moving boundaries in the presence of a transverse magnetic field. It also eliminates the possible error induced by taking the value of numerical infinity (representing the unbounded domain of the flow) as a finite number. The scheme is based on implicit use of infinite series of exponentials for velocity components. The issue of convergence of these series is also discussed. An asymptotic solution valid for large values of M, the Hartmann number, and an approximate solution valid for any value of M are further developed. In particular, the case of axisymmetric magnetohydrodynamic (MHD) flow due to a stretching sheet has been dealt with in some detail. A comparison has been made of the merits of various techniques used in the paper and appropriate conclusions are drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.