Abstract

Superconducting radio frequency cavities meet the demanding performance requirements of modern accelerators and high-brilliance light sources. Their design requires a precise knowledge of their electromagnetic resonances. A numerical solution of Maxwell’s equations is required to compute the resonant eigenmodes, their frequencies and losses due to the complex cavity shape. The consideration of resonances damped by external losses leads to a nonlinear eigenvalue problem. Previous work showed that, using State-Space Concatenation to construct a reduced order model and Newton iteration to solve the arising eigenvalue problem, solutions can be obtained on workstation computers even for large-scale problems without extensive simplification of the structure itself. In this paper, we augment the solution workflow by Beyn’s contour integral algorithm to increase the number of found eigenmodes. Numerical experiments are presented for one academic and two real-life superconducting cavities and partially compared to measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.