Abstract
By using generating functions technique, we investigate some properties of the k-ary Lyndon words. We give an explicit formula for the generating functions including not only combinatorial sums, but also hypergeometric function. We also derive higher-order differential equations and some formulas related to the k-ary Lyndon words. By applying these equations and formulas, we also derive some novel identities including the Stirling numbers of the second kind, the Apostol-Bernoulli numbers and combinatorial sums. Moreover, in order to compute numerical values of the higher-order derivative for the generating functions enumerating k-ary Lyndon words with prime number length, we construct an efficient algorithm. By applying this algorithm, we give some numerical values for these derivative equations for selected different prime numbers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.