Abstract

Linear models with additive unknown-but-bounded input disturbances are extensively used to model uncertainty in robust control systems design. Typically, the disturbance set is either assumed to be known a priori or estimated from data through set-membership identification. However, the problem of computing a suitable input disturbance set in case the set of possible output values is assigned a priori has received relatively little attention. This problem arises in many contexts, such as in supervisory control, actuator design, decentralized control, and others. In this paper, we propose a method to compute input disturbance sets (and the corresponding set of states) such that the resulting set of outputs matches as closely as possible a given set of outputs, while additionally satisfying strict (inner or outer) inclusion constraints. We formulate the problem as an optimization problem by relying on the concept of robust invariance. The effectiveness of the approach is demonstrated in numerical examples that illustrate how to solve safe reference set and input-constraint set computation problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.