Abstract

This paper presents a stabilized finite element method for the three dimensional computation of incompressible bubble dynamics using a level set method. The interface between the two phases is resolved using the level set approach developed by Sethian [Level Set Methods and Fast Marching Methods, Cambridge University Press, 1999], Sussman et al. [J. Comput. Phys. 114 (1994) 146], and Sussman et al. [J. Comput. Phys. 148 (1999) 81–124]. In this approach the interface is represented as a zero level set of a smooth function. The streamline-upwind/Petrov–Galerkin method was used to discretize the governing flow and level set equations. The continuum surface force (CSF) model proposed by Brackbill et al. [J. Comput. Phys. 100 (1992) 335–354] was applied in order to account for surface tension effects. To restrict the interface from moving while re-distancing, an improved re-distancing scheme proposed in the finite difference context [J. Comput. Phys. 148 (1999) 81–124] is adapted for finite element discretization. This enables us to accurately compute the flows with large density and viscosity differences, as well as surface tension. The capability of the resultant algorithm is demonstrated with two and three dimensional numerical examples of a single bubble rising through a quiescent liquid, and two bubble coalescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.