Abstract

The ability of a turbulence model to capture the interaction between swirl and the turbulent stress field is, therefore, crucial to the predictive performance of the computatinal scheme as a whole. A finite-volume procedure is used here to contrast the performance of the k-epsilon eddy-viscosity model with that of a Reynolds-stress transport closure. It is shown that the former returns a seriously excessive level of turbulent diffusion and misrepresents the experimentally observed flow characteristics. In contrast, the Reynolds-stress model successfully captures the subcritical nature of the flow by returning significantly lower levels of the shear stress components and predicts velocity and turbulence fields that are in good agreement with corresponding measurements. 22 references.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.