Abstract

The paper presents finite-difference predictions for the convective heat transfer in symmetrically heated rotating cavities subjected to a radial outflow of cooling air. An elliptic calculation procedure has been used, with the turbulent fluxes estimated by means of a low Reynolds number k–ε model and the familiar “turbulence Prandtl number” concept. The predictions extend to rotational Reynolds numbers of 3.7 × 106 and encompass cases where the disk temperatures may be increasing, constant, or decreasing in the radial direction. It is found that the turbulence model leads to predictions of the local and average Nusselt numbers for both disks that are generally within ± 10 percent of the values from published experimental data, although there appear to be larger systematic errors for the upstream disk than for the downstream disk. It is concluded that the calculations are of sufficient accuracy for engineering design purposes, but that improvements could be brought about by further optimization of the turbulence model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.