Abstract

ObjectiveTranscranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs. In this study, we computationally investigated the generated electric field intensity, polarity, and co-stimulation of cortical areas for lower limb targeting using high-resolution head models. MethodsVolume conductor models have thus been employed to estimate the electric field in the brain. A total of 18 head models of healthy subjects were used to calculate the group-level electric fields generated from four montages of tDCS for modulation of lower limbs. ResultsC1-C2 montage delivered higher electric field intensities while reaching deeper regions of the lower-limb motor area. It produced a uniform polarization on the same hemisphere target with comparable intensities between hemispheres but with higher variability. ConclusionsProper montage selection allows reaching deeper regions of the lower-limb motor area with uniform polarization. SignificanceFirst systematic computational study providing support to tDCS experimental studies using montages for the lower limb while considering polarity factor for balancing brain activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.