Abstract

This work implements Lattice Boltzmann method to compute flows in double-sided cross-shaped lid-driven cavities. Firstly, a complicated geometry which is a symmetrized version of the staggered lid-driven cavity namely, the double-sided cross-shaped lid-driven cavity with antiparallel uniform wall motion is studied employing Single as well as Two Relaxation time models. The streamline patterns and vorticity contours obtained for low to moderate Reynolds numbers (150–1000) are compared with published results and found to be in good accordance. Next, this code is extended to simulate flows in a double-sided cross-shaped lid-driven cavity with parallel uniform wall motion. The effect of three dimensionality is also studied for low Reynolds numbers. Lattice Boltzmann method is then used to investigate the oscillating double-sided cross-shaped lid-driven cavity with antiparallel and parallel wall motions. The movement and formation of primary and secondary vortices have been well captured with the variation of Reynolds numbers and oscillating frequencies for uniform and oscillating wall motions. Reasonable agreements with the established results have been observed for the double-sided cross-shaped cavity with uniform wall motions, while new results have been obtained in the case of oscillating wall motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.