Abstract
For the past few years, heave plates have been used in the offshore industry due to their favorable hydrodynamic characteristics in oscillating flows, i.e., increased added mass and damping. The hydrodynamic coefficients of heave plates are strongly influenced by the proximity of solid boundaries. Assessing how this variation depends on the proximity to the seabed and on the amplitude of the oscillation is the main aim of this paper. In this process, a new model describing the work done by damping in terms of the flow enstrophy is described herein. This new approach is able to provide a direct correlation between the vortex shedding processes and the linear damping coefficient. Numerical simulations have been performed using the finite volume open source solver OpenFOAM. Simulations have been conducted on a solid circular disc oscillating axially in water at various elevations above an impermeable seabed boundary. Results for hydrodynamic coefficients are validated against previously published experimental data. At low KC numbers, a systematic increase in added mass and damping, corresponding to an increase in the seabed proximity, is observed. As seen in experiments, a critical KC where the monotonic trend of the hydrodynamic coefficients with KC is disrupted and that depends on the seabed distance exists. The physical behavior of the flow around the critical KC is explained through an analysis of the flow enstrophy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.