Abstract

The dynamical structure factor of the Babujan–Takhtajan antiferromagnetic spin-1 chain is computed numerically at zero temperature and zero magnetic field, using the higher spin generalization of an algebraic Bethe ansatz-based method previously used for spin-1/2 integrable chains. This method, which consists in the explicit construction of eigenstates and the summation of the Lehmann representation of the correlator, is particularly challenging to implement here in view of the presence of strongly deviated string solutions to the Bethe equations. We show that a careful treatment of these deviations makes it possible to obtain perfect saturation of sum rules for small system sizes, and extremely good saturation for large system sizes where the dynamical structure factor is computed by including all two-spinon and four-spinon contributions. The real-space spin–spin correlation, obtained by Fourier transforming our results, displays asymptotics fitting predictions from conformal field theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.