Abstract

Despite the modern level of development of computational chemistry methods and technological progress, fast and accurate determination of solvation free energy remains a huge problem for physical chemists. In this paper, we describe two computational schemes that can potentially solve this problem. We consider systems of poorly soluble drug compounds in supercritical carbon dioxide. Considering that the biggest contribution among all intermolecular interactions is made by van der Waals interactions, we model solute and solvent particles as coarse-grained ones interacting via the effective Lennard-Jones potential. The first proposed approach is based on the classical density functional theory and the second one relies on molecular dynamics simulation of the Lennard-Jones fluid. Sacrificing the precision of the molecular structure description while capturing the phase behavior of the fluid with sufficient accuracy, we propose computationally advantageous paths to obtaining the solvation free energy values with the accuracy satisfactory for engineering applications. The agreement reached between the results of such coarse-graining models and the experimental data indicates that the use of the all-atom molecular dynamic simulations for the studied systems seems to be excessive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.