Abstract

SummaryThis paper proposes a novel algorithm that characterizes the robust capture basin and the discriminating kernel for constrained nonlinear systems with uncertainties based on viability theory. For nonlinear systems with constrained inputs and bounded uncertainties, the viability kernel is the largest set of states possessing a possibility to be viable in a set, and the capture basin is the largest set of states possessing a possibility to reach a target in a finite time, and keeping viable in a set before reaching the target. However, in the viability theory, both control and uncertainty in a parameterized system are considered as parameters: the discriminating kernel and the proposed robust capture basin link viability theory with robust control, which take both control and uncertainties into account. For the constrained uncertain nonlinear systems, the discriminating kernel is the largest set of states that is robust invariant in a set with proper control, and the robust capture basin is the largest set of states reaching their target in finite time with proper control despite of uncertainties and keeping viable in a set before reaching the target. Furthermore, we map all the states to optimal regulatory control such that the systems are regulated by a regulation map. To compute the robust capture basin and the discriminating kernel, we use interval methods to provide guaranteed solutions. The proposed algorithms in this paper approximate an outer approximation of the minimum reachable target and inner approximations of the robust capture basin and the discriminating kernel in a guaranteed way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.