Abstract
In this paper, we propose algorithms for computing differential Chow forms for ordinary prime differential ideals which are given by characteristic sets. The algorithms are based on an optimal bound for the order of a prime differential ideal in terms of a characteristic set under an arbitrary ranking, which shows the Jacobi bound conjecture holds in this case. Apart from the order bound, we also give a degree bound for the differential Chow form. In addition, for a prime differential ideal given by a characteristic set under an orderly ranking, a much simpler algorithm is given to compute its differential Chow form. The computational complexity of the algorithms is single exponential in terms of the Jacobi number, the maximal degree of the differential polynomials in a characteristic set, and the number of variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.