Abstract

We analyze a systematic algorithm for the exact computation of the current cumulants in stochastic nonequilibrium systems, recently discussed in the framework of full counting statistics for mesoscopic systems. This method is based on identifying the current cumulants from a Rayleigh-Schrödinger perturbation expansion for the generating function. Here it is derived from a simple path-distribution identity and extended to the joint statistics of multiple currents. For a possible thermodynamical interpretation, we compare this approach to a generalized Onsager-Machlup formalism. We present calculations for a boundary driven Kawasaki dynamics on a one-dimensional chain, both for attractive and repulsive particle interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.