Abstract

The present paper derives numerical bounds of the elastic properties of polycrystals. The homogenized elastic coefficients are computed from Voronoi-type unit cells. The main result of the article detemines the upper and lower bounds for a case of polycrystals made up of cubic single crystals by using the fast Fourier transform method (FFT) based on the shape function. Our method guarantees the exact solutions in comparison to the Moulinec and Suquet’s method within some uncontrolled approximations. The proposed method could be extended to account for other material symmetries such as hexagonal or tetragonal crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.