Abstract

Comparisons between particle and continuum simulations of hypersonic near-continuum flows are presented. The particle approach employs the direct simulation Monte Carlo method (DSMC), and the continuum approach solves the Euler equations. Both simulations have thermochemistry models for air implemented including ionization. A new axisymmetric DSMC code which is efficiently vectorized is developed for this study. In this DSMC code, particular attention is paid to matching the relaxation rates employed in the continuum approach. This investigation represents a continuation of a previous study which considered thermochemical relaxation in one-dimensional shock waves of nitrogen. Comparison of the particle and continuum methods is first made for an axisymmetric blunt-body flow of air at 7 km/s. Very good agreement is obtained for the two solutions. The two techniques also compare well for a one-dimensional shock wave in air at 10 km/s. In both applications, the results are found to be sensitive to various aspects of the chemistry models employed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call