Abstract
The asymptotic spectral properties of matrices of grid operators on polygonal domains in the plane are studied in the case of refining triangular grids. Methods available for analyzing spectral distributions are largely based on tool of the theory of generalized locally Toeplitz sequences (GLT theory). In this paper, we show that the matrices of grid operators on nonrectangular domains do not form GLT sequences. A method for calculating spectral distributions in such cases is proposed. Generalizations of GLT sequences are introduced, and preconditioner based on them are proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.