Abstract

In this paper, A semi-physical method for calculating time varying mesh stiffness and the dynamic response of gear system based on experimental strain data is studied. In a previous work, it was reported that dynamic strain on gear tooth root can be measured under normal operating condition using fiber Bragg Grating (FBG) sensors. This paper aims to compute gear dynamic response using experimental strain data and give an explanation of the fault propagation process. Using the dynamic strain data from FBG sensors, a method for calculating the dynamic response of gear system is proposed. Based on the theory of potential energy and material mechanics, the relationship between the bending strain of the tooth root and the time varying mesh stiffness is established. The time varying mesh stiffness and dynamic response of healthy gear and pitted gear are then calculated respectively. The force transmission during gear mesh under the condition of surface pitting is analyzed. It is concluded that in the case of pitting fault, there will be a significant loss of torque in the power transmission process due to the loss of contact area. It is further inferred that the loss of meshing force andthedecreasing of Hertzian contact stiffness are the major contributing factors for pitting fault. In addition, the semi-analytical method of computing gear dynamic response is validated with experimental study ofacceleration signal in the perspective of dynamic response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.