Abstract

For dual three-phase interior permanent magnet synchronous machines (DT-IPMSMs), open-phase fault (OPF) can result in significant average torque reduction and harmonics in the output torque and speed, which prevent the machines from a reliable and safe operation. Indeed, these adverse effects are mainly due to significant harmonics in the stator currents caused by OPF. This article investigates fault-tolerant control (FTC) of DT-IPMSM under OPF and proposes a computation-efficient FTC solution to maximize the average torque and minimize the fault-induced torque and speed ripples. In the proposed FTC, the open-phase model is first derived, and optimal stator currents are then derived to achieve maximized average torque and minimized fault-induced torque harmonics. The computation efficiency enables the proposed solution, the capability of FTC, under both the steady-state and transient conditions. Moreover, the proposed FTC can eliminate the harmonic current components in the torque contributing frame and, thus, reduce the harmonic losses, and nonlinear inductance maps are employed to consider magnetic saturation. The proposed FTC is compared with existing methods and evaluated with experiments on a laboratory DT-IPMSM under various operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call