Abstract
The key to designing a real-time video coding system is efficient motion estimation, which reduces temporal redundancies. The motion estimation of the H.264/AVC coding standard can use multiple references and multiple block sizes to improve rate-distortion performance. The computational complexity of H.264 is linearly dependent on the number of allowed reference frames and block sizes using a full exhaustive search. Many fast block-matching algorithms reduce the computational complexity of motion estimation by carefully designing search patterns with different shapes or sizes, which have a significant impact on the search speed and distortion performance. However, the search speed and the distortion performance often conflict with each other in these methods, and their high computational complexity incurs a large amount of memory access. This paper presents a novel block-matching scheme with image indexing, which sets a proper priority list of search points, to encode a H.264 video sequence. This study also proposes a computation-aware motion estimation method for the H.264/AVC. Experimental results show that the proposed method achieves good performance and offers a new way to design a cost-effective real-time video coding system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.