Abstract
A class of lower bounds for the entanglement cost of any quantum state was recently introduced in Lami and Regula (2023 Nature Physics) in the form of entanglement monotones known as the tempered robustness and tempered negativity. Here we extend their definitions to point-to-point quantum channels, establishing a lower bound for the asymptotic entanglement cost of any channel, whether finite or infinite dimensional. This leads, in particular, to a bound that is computable as a semidefinite program and that can outperform previously known lower bounds, including ones based on quantum relative entropy. In the course of our proof we establish a useful link between the robustness of entanglement of quantum states and quantum channels, which requires several technical developments such as showing the lower semicontinuity of the robustness of entanglement of a channel in the weak*-operator topology on bounded linear maps between spaces of trace class operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.