Abstract
Let $\lambda$ be the LR criterion for testing an additional information hypothesis on a subvector of $p$-variate random vector ${x}$ and a subvector of $q$-variate random vector ${y}$, based on a sample of size $N=n+1$. Using the fact that the null distribution of $-(2/N)\log \lambda$ can be expressed as a product of two independent $\Lambda$ distributions, we first derive an asymptotic expansion as well as the limiting distribution of the standardized statistic $T$ of $-(2/N)\log \lambda$ under a high-dimensional framework when the sample size and the dimensions are large. Next, we derive computable error bounds for the high-dimensional approximations. Through numerical experiments it is noted that our error bounds are useful in a wide range of $p$, $q$, and $n$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.