Abstract
AbstractWe promote the concept of object directed computability in computational geometry in order to faithfully generalise the well-established theory of computability for real numbers and real functions. In object directed computability, a geometric object is computable if it is the effective limit of a sequence of finitary objects of the same type as the original object, thus allowing a quantitative measure for the approximation. The domain-theoretic model of computational geometry provides such an object directed theory, which supports two such quantitative measures, one based on the Hausdorff metric and one on the Lebesgue measure. With respect to a new data type for the Euclidean space, given by its non-empty compact and convex subsets, we show that the convex hull, Voronoi diagram and Delaunay triangulation are Hausdorff and Lebesgue computable.KeywordsConvex HullCompact SubsetVoronoi DiagramComputational GeometryDelaunay TriangulationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.