Abstract
This paper describes a compulsorily phase locked differential interferometer using an orthogonally polarized light source of a modulated LD with high extinction ratio to reduce non-linearity of the interferometer caused by polarization cross-talk. The current modulated LD is used as a light source to make the interferometer compact and for the scanning phase of the interferometer. The interferometer is operated compulsorily at the maximum inclination point of the fringe intensity curve by fringe scanning and an electric system. A Wollaston prism of high extinction ratio (50 dB) is used to combine the polarizing beams and to make the polarization cross-talk very small. In one light source the polarized output beams are on the same propagation axis; in the other they have a small crossing angle (2.5 mrad ∼ 10 mrad) to completely exclude non-linearity of the interferometer causded by polarization cross-talk. Using jets of a gas mixture of nitrogen and ethylene, this interferometer was demonstrated to be useful in detecting the photothermal effect of a photothermal velocimeter under phase fluctuation in a turbulent flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.