Abstract
In vivo imaging of 225Ac is a major challenge in the development of targeted alpha therapy radiopharmaceuticals due to the extremely low injected doses. In this paper, we present the design of a multi-modality gamma camera that integrates both proximity and Compton imaging in order to achieve the demanding sensitivities required to image 225Ac with good image quality. We consider a dual-head camera, each of the heads consisting of two planar cadmium zinc telluride detectors acting as scatterer and absorber for Compton imaging, and with the scatterer practically in contact with the subject to allow for proximity imaging. We optimize the detector's design and characterize the detector's performance using Monte Carlo simulations. We show that Compton imaging can resolve features of up to 1.5 mm for hot rod phantoms with an activity of 1 μCi, and can reconstruct 3D images of a mouse injected with 0.5 μCi after a 15 minutes exposure and with a single bed position, for both 221Fr and 213Bi. Proximity imaging is able to resolve two 1 mm-radius sources of less than 0.1 μCi separated by 1 cm and at 1 mm from the detector, as well as it can provide planar images of 221Fr and 213Bi biodistributions of the mouse phantom in 5 minutes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on radiation and plasma medical sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.