Abstract

The clinical demand for bone grafting materials necessitated the development of animal models. Critical size defect model has been criticized recently, mainly for its inaccuracy. Our objective was to develop a dependable animal model that would provide compromised bone healing, and would allow the investigation of bone substitutes. In the first group a critical size defect was created in the femur of adult male Wistar rats, and a non-critical defect in the remaining animals (Groups II, III and IV). The defect was left empty in group II, while in groups III and IV a spacer was interposed into the gap. Osteoblast activity was evaluated by NanoSPECT/CT imaging system. New bone formation and assessment of a union or non-union was observed by μCT and histology. The interposition model proved to be highly reproducible and provided a bone defect with compromised bone healing. Significant bone regeneration processes were observed four weeks after removal of the spacer. Our results have shown that when early bone healing is inhibited by the physical interposition of a spacer, the regeneration process is compromised for a further 4 weeks and results in a bone defect during the time-course of the study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.