Abstract

Carbon dioxide, as well as ammonia, are widely used in large-scale chemistry for the production of urea. Currently, the most common technology for producing carmabide is according to which liquid NH3 is pumped into the synthesis column by a pump at a pressure of 15 MPa, and gaseous CO2 is supplied by a compressor with the same pressure as ammonia. Gaseous CO2 is compressed in a multi-stage compressor to a pressure of 15 MPa before it enters the urea synthesis unit, in which it reacts with ammonia. The specific energy consumption for compressing carbon dioxide in a compressor unit is 0.13 kWh/kg. Reducing energy for producing CO2 and also urea can be achieved when it is possible to supply carbon dioxide in liquid form under a pressure of 15 MPa to the urea synthesis column. The analysis showed that to solve this problem it is necessary to implement two processes: compression to 1.8–3.0 MPa, and then cooling and liquefaction of gaseous CO2 due to the cold of liquid ammonia. Liquefied CO2 can then be pumped to the urea column. In order to introduce carbamide into production, a new carbon dioxide compressor and pumping unit has been created. The installation scheme for compressing CO2 to a pressure of 15 MPa and its subsequent supply to the production of urea is given. A cold liquid ammonia stream with an initial temperature of –30 °C is used as a source of cold in the installation. The performance and power consumption of the compressor unit depend on the compression pressure of CO2. After the CO2 is compressed to 1.8 MPa, it is possible to cool 2.3 t/h of carbon dioxide with cold liquid ammonia and then direct it to the synthesis of urea using a pump under a pressure of 15 MPa. The specific energy consumption in the installation will be 0.1 kWh/kg. When CO2 is compressed up to 3 MPa, the plant capacity is 8.78 t/h, and the unit costs are 0,108 kWh/kg. Urea production in this case may increase from 1400 to 1680 t/day. Ref. 5, Fig. 3, Tab. 3.

Highlights

  • Диоксид углерода и аммиак широко используются в крупнотоннажной химии для производства карбамида

  • Что для решения этой задачи необходимо реализовать два процесса: сжатия до 1,8–3,0 МПа, затем охлаждения и ожижения газообразного CO2 за счет холода жидкого аммиака

  • The analysis showed that to solve this problem it is necessary to implement two processes: compression to 1.8–3.0 MPa, and cooling and liquefaction of gaseous CO2 due to the cold of liquid ammonia

Read more

Summary

Introduction

Диоксид углерода и аммиак широко используются в крупнотоннажной химии для производства карбамида. Приводится схема установки для сжатия CO2 до давления 15 МПа и последующей подачи его на производство карбамида.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.