Abstract

The focus of the paper is on procedures and strategies to compute high-fidelity compressor maps for aero engines based on 3D CFD. The developed automatic process starts with an operation point analysis where a convergence checker terminates the running 3D flow analysis as soon as physical quantities such as mass flow or aerodynamic blade row loss have converged. Subsequently, the corresponding compressor speed line is determined, where operation limits like surge and choke are detected by solving optimization and root search problems, respectively. Such speed lines also have to be calculated for various other shaft speeds to obtain the whole performance map. This is achieved by adjusting shaft speed and boundary conditions, where the mesh for variable stator vanes and the amount of bleed mass flow are adapted automatically according to given schedules. Finally, the developed process is applied to a 4.5-stage axial compressor to demonstrate feasibility of the proposed strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.