Abstract

On the basis of the principal components analysis-particle swarm optimization-least squares support vector machine (PCA-PSO-LSSVM) algorithm, a fault diagnosis system is proposed for the compressor system. The relationship between the working principle of a compressor system, the fault phenomenon, and the root cause is analyzed. A fault diagnosis model is established based on the LSSVM optimized using PSO, the compressor fault diagnosis test experimental platform is used to obtain the fault signal of various fault occurrence states, and the PCA algorithm is employed to extract the characteristic data in the fault signal as input to the fault diagnosis model. The back-propagation neural network, the LSSVM algorithm, and the PSO-LSSVM algorithm are analyzed and compared with the proposed fault diagnosis model. Results show that the PCA-PSO-LSSVM fault diagnosis model has a maximum fault recognition efficiency that is 10.4% higher than the other three models, the test sample classification time is reduced by 0.025 s, the PCA algorithm can effectively reduce the input dimension, and the PSO-LSSVM fault diagnosis model based on the PCA algorithm for extracting features has a high recognition rate and accuracy. Therefore, the proposed fault diagnosis system can effectively identify the compressor fault and improve the efficiency of the compressor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.