Abstract

We study the problem of joint wideband spectrum sensing and recovery of multi-band signals in a multi-antenna-based sub-Nyquist sampling framework. Specifically, the multi-band signal is composed of a number of uncorrelated narrowband signals spreading over a wide frequency band. Unlike existing works which assume the source signals impinge on the receiver via a line-of-sight (LOS) path, we consider a more practical unknown MIMO channel which results from multipath propagation. A new sub-Nyquist sampling architecture is proposed, where each antenna output passes through two channels, namely, a direct path and a delayed path with a controlled amount of time delay. The signal at each channel is then sampled by a synchronized low-rate analog-to-digital converter (ADC). We utilize the collected data samples to build a set of cross-correlation matrices with different time lags and develop a CANDECOMP/PARAFAC (CP) decomposition-based method to recover the carrier frequencies, power spectra as well as the source signals themselves. Recovery conditions of the proposed method are analyzed, and Cramér-Rao bound (CRB) results for our estimation problem are derived. Simulation results are presented to illustrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call