Abstract

This paper has focused on the structural performance of recycled aggregate concrete (RAC) under both cyclic and monotonic loading. RAC specimens with different recycled coarse aggregate (RCA) replacement percentages of 0%, 25%, 50%, 75% and 100% were cast and tested. The compressive stress-strain relationship and the failure mode were investigated for each RCA replacement ratio. The effects of the RCA replacement percentage on the compressive mechanical properties of the RAC specimens including the strength, elastic modulus, peak strain, ultimate strain and Poisson's ratio were also studied. The RAC specimens have shown similar failure characteristics regardless of monotonic or cyclic loading. In addition, the compression skeleton curves of the RAC specimens under cyclic loading agree well with those under monotonic loading. Based on the experimental results, the characteristic points pertaining to the hysteresis loop were defined and their relations were established. Furthermore, the constitutive equations of the RAC as well as its simplified form were proposed and applied in numerical simulations of RAC columns and frames under cyclic loading. The proposed constitutive equations have shown promising accuracy in predicting the hysteresis performance of RAC on both component and structural levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.