Abstract

In filament-wound composites, the existence of fiber undulation introduces unique challenges in the calculation of compressive modulus and strength using traditional composite theories. In the current work, a previously developed three-dimensional continuum representation of undulated fibers was incorporated into a multi-scale homogenization process to simulate the effective longitudinal stress-strain behavior of filament-wound cylinders and compressive failure in the undulation regions. Calculated properties were compared to previously obtained experimental data for carbon fiber cylinders made with various matrix materials and winding parameters. The average difference between predicted and measured properties was 14% and the predicted failure modes were consistent with the experimental observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.