Abstract

Rapid drying shrinkage is an important factor in causing cracks of concrete. This research was aimed at studying the effects of Palm Oil Empty Fruited Bunch (POEFB) fibre on the drying shrinkage behaviour and compressive strength of foamed concrete (FC) under two different curing conditions. The adopted curing conditions were air curing and tropical natural weather curing. Two volume fractions of POEFB fibre were used, which were 0.25% and 0.50% based on dry mix weight with 1-2 cm in length. The dimensional stability of the control specimen and POEFB fibre reinforced FCs was obtained by cumulating the measured linear shrinkage or expansion due to different curing conditions. The results from the two different specimens were compared. The results showed that specimens reinforced with POEFB fibre and cured under tropical natural weather condition attained lesser variations of dimensional stability and higher 90-day strength performance index than the reference mix without POEFB fibre. This improvement was attributed to the ability of POEFB fibre to bridge the cement matrix, and irregular wetting process under tropical natural weather curing condition had enabled more production of Calcium Silicate Hydrate gels that gradually blocked the penetration of water into the specimens and increased the compressive strength. It is observed that 11.43% and 4.46% of improvement in 90-day strength performance index were obtained in natural weather cured 0.5% of POEFB fibre reinforced specimen, with corresponded to the reference mix and 0.25% of POEFB fibre reinforced specimens, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.