Abstract

A local Digital Volume Correlation (DVC) based measurement of displacements and strains of synthetic bone samples under an ex-situ compression using the time-lapsed imaging procedure was performed in the present study. Micro Finite Element (µFE) model was used to simulate the compression of synthetic bone samples with experimental-based ( ExBC), and DVC interpolated displacement boundary conditions ( IPBC). The obtained µFE nodal displacement data compared with DVC. A good match of displacement patterns and correlation values of R2 = 0.85–0.99 and RMSE ≤ 12 µm was observed for the IPBC predicted displacements against DVC displacements. However, the ExBC provided a good correlation of transverse displacements only (U: R2 = 0.85–0.99 and V: R2 = 0.77–0.99). The average axial displacement of ExBC matched well with DVC, and a qualitative and quantitative understanding of the axial displacement was possible with ExBC. A moderate agreement of axial strain patterns was observed between DVC and IPBC, even though a good agreement on displacement was observed. The ExBC showed a higher axial strain compared to DVC in all samples. The transverse strains varied between the same extreme values for both boundary conditions and within the DVC range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call