Abstract

Compressive spectral imaging systems have promising applications in the field of object classification. However, for soil classification problem, conventional methods addressing this specific task often fail to produce satisfying results due to the tradeoff between the invariance and discrepancy of each soil. In this paper, we explore a liquid crystal tunable filters (LCTF)-based system and propose a three-dimensional convolutional neural network (3D-CNN) for soil classification. We first obtain a set of soil compressive measurements via a low spatial resolution detector, and soil hyperspectral images are reconstructed with improved resolution in spatial as well as spectral domains by a compressive sensing (CS) method. Furthermore, different from previous spectral-based object classification methods restricted to extract features from each type independently, on account of the potential of spectral property on individual solid, our method proposes to apply the principal component analysis(PCA) to achieve a dimensionality reduction in the spectral domain. Then, we explore a differential perception model for flexible feature extraction, and finally introduce a 3D-CNN framework to solve the multi-soil classification problem. Experimental results demonstrate that our algorithm not only is able to accelerate the ability of feature discriminability but also performs against conventional soil classification methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.